Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.695
Filtrar
1.
Curr Drug Discov Technol ; 21(1): e101023222024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629172

RESUMO

BACKGROUND: VEGFR-2 tyrosine kinase inhibitors are receiving a lot of attention as prospective anticancer medications in the current drug discovery process. OBJECTIVE: This work aims to explore the PubChem library for novel VEGFR-2 kinase inhibitors. 1H-Indazole-containing drug AXITINIB, or AG-013736 (FDA approved), is chosen as a rational molecule for drug design. This scaffold proved its efficiency in treating cancer and other diseases as well. METHODS: The present study used the virtual screening of the database, protein preparation, grid creation, and molecular docking analyses. RESULTS: The protein was validated on different parameters like the Ramachandran plot, the ERRAT score, and the ProSA score. The Ramachandran plot revealed that 92.1% of the amino acid residues were located in the most favorable region; this was complemented by an ERRAT score (overall quality factor) of 96.24 percent and a ProSA (Z score) of -9.24 percent. The Lipinski rule of five was used as an additional filter for screening molecules. The docking results showed values of binding affinity between -14.08 and -12.34 kcal/mol. The molecule C1 showed the highest docking value of -14.08 Kcal/mol with the maximum number of strong H-bonds by -NH of pyridine to amino acid Cys104 (4.22Å), -NH of indazole to Glu108 (4.72), and Glu70 to bridge H of -NH. These interactions are similar to Axitinib docking interactions like Glu70, Cys104, and Glu102. The docking studies revealed that pi-alkyl bonds are formed with unsubstituted pyridine, whereas important H-bonds are observed with different substitutions around -NH. Based on potential findings, we designed new molecules, and molecular docking studies were performed on the same protein along with ADMET studies. The designed molecules (M1-M4) also showed comparable docking results similar to Axitinib, along with a synthetic accessibility score of less than 4.5. CONCLUSION: The docking method employed in this work opens up new possibilities for the design and synthesis of novel compounds that can act as VEGFR-2 tyrosine kinase inhibitors and treat cancer.


Assuntos
Antineoplásicos , Fator A de Crescimento do Endotélio Vascular , Axitinibe , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estudos Prospectivos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Aminoácidos , Piridinas
2.
Cell Commun Signal ; 22(1): 225, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605348

RESUMO

The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sialomucinas/metabolismo , Endocitose , Clatrina/metabolismo
3.
Cell Commun Signal ; 22(1): 221, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594674

RESUMO

VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.


Assuntos
Diabetes Mellitus , Pré-Eclâmpsia , Recém-Nascido , Humanos , Gravidez , Feminino , Placenta/metabolismo , Número de Gestações , Ocitocina/metabolismo , Pré-Eclâmpsia/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteômica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Ocitocina/metabolismo
4.
Drug Dev Res ; 85(3): e22186, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643351

RESUMO

Current chemotherapeutic agents have several limitations, including lack of selectivity, the development of undesirable side effects, and chemoresistance. As a result, there is an unmet need for the development of novel small molecules with minimal side effects and the ability to specifically target tumor cells. A new series of 3-phenoxybenzoic acid derivatives, including 1,3,4-oxadiazole derivatives (4a-d) and benzamides derivatives (5a-e) were synthesized; their chemical structures were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass spectra; and various physicochemical properties were determined. The antiproliferative activities of the new derivatives were evaluated by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Three compounds (4b, 4c, and 4d) exhibited cytotoxicity against two of the three cell lines tested, five compounds (3, 4a, 5a, 5b, and 5e) were toxic to one cell line, while two compounds (5c and 5d) were not cytotoxic to any of the three cell lines tested in the current study. Based on docking scores, MTT assay findings, and vascular endothelial growth factor receptor 2 (VEGFR-2) kinase activity data, Compound 4d was selected for further biological investigation. Flow cytometry was used to determine the mode of cell death (apoptosis vs. necrosis) and the effect on cell cycle progression. Compound 4d arrested HepG2 hepatocellular carcinoma cells in the G2/M phase and activated both the intrinsic and extrinsic apoptosis pathways. In conclusion, Compound 4d has shown promising results for future research as a potent VEGFR-2 tyrosine kinase inhibitor.


Assuntos
Antineoplásicos , Benzamidas , Benzoatos , Estrutura Molecular , Relação Estrutura-Atividade , Benzamidas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular , Proliferação de Células , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Desenho de Fármacos
5.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504533

RESUMO

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Emodina , Humanos , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
6.
Cell Commun Signal ; 22(1): 182, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491522

RESUMO

BACKGROUND: Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms. METHODS: In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on. RESULTS: Here, we found that AGEs activated Wnt/ß-catenin signaling pathway and enhanced the ß-catenin protein level by affecting the expression of ß-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate ß-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of ß-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-ß-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified. CONCLUSION: Collectively, this study offers insight into the pathophysiological functions of ß-catenin in diabetic angiogenesis.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Animais , Humanos , Camundongos , 60489 , beta Catenina/metabolismo , Histona Desacetilases/metabolismo , Fosforilação , Proteínas Repressoras/metabolismo , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
7.
J Int Med Res ; 52(3): 3000605241234558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38518198

RESUMO

OBJECTIVE: To investigate the roles and underlying mechanisms of vascular endothelial growth factor receptor-3 (VEGFR-3) in gastric cancer (GC). METHODS: VEGFR-3 gene expression profiles in human gastric adenocarcinoma (GAC) tissues were analysed using The Cancer Genome Atlas database. Human GC cell lines and were used for in vitro studies. Mouse models of GC and distant metastasis were used for in vivo studies. Silencing of VEGFR-3 gene expression was achieved using small interfering RNA. RESULTS: VEGFR-3 gene expression was significantly elevated in GAC tissues and GC cells. Higher VEGFR-3 expression was positively correlated with more advanced stages and a greater number of metastatic lymph nodes. In vitro studies in GC cells showed that knockdown of VEGFR-3 gene expression significantly suppressed cell proliferation and migration, but promoted apoptosis. In vivo investigations revealed that silencing of VEGFR-3 gene expression exhibited significant inhibition on tumour growth and metastasis. Further mechanistic studies showed that VEGFR-3 exerted its pathological roles by affecting the key molecules in the apoptotic and epithelial-mesenchymal transition pathways. CONCLUSION: The molecular pathways associated with VEGFR-3-mediated pathological effects could be targets in the development of novel approaches for the diagnosis, prognosis and treatment of GC.


Assuntos
Neoplasias Gástricas , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Prognóstico , Neoplasias Gástricas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
8.
Chem Biol Drug Des ; 103(3): e14503, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38480495

RESUMO

Flubendazole, an FDA-approved anthelmintic, has been predicted to show strong VEGFR2 inhibitory activity in silico screening combined with in vitro experimental validation, and it has shown anti-cancer effects on some human cancer cell lines, but little is known about the anti-angiogenesis effects and anti-prostate cancer effects. In this study, we analyzed the binding modes and kinetic analysis of flubendazole with VEGFR2 and first demonstrated that flubendazole suppressed VEGF-stimulated cell proliferation, wound-healing migration, cell invasion and tube formation of HUVEC cells, and decreased the phosphorylation of extracellular signal-regulated kinase and serine/threonine kinase Akt, which are the downstream proteins of VEGFR2 that are important for cell growth. What's more, our results showed that flubendazole decreased PC-3 cell viability and proliferation ability, and suppressed PC-3 cell wound healing migration and invasion across a Matrigel-coated Transwell membrane in a concentration-dependent manner. The antiproliferative effects of flubendazole were due to induction of G2-M phase cell cycle arrest in PC-3 cells with decreasing expression of the Cyclin D1 and induction of cell apoptosis with the number of apoptotic cells increased after flubendazole treatment. These results indicated that flubendazole could exert anti-angiogenic and anticancer effects by inhibiting cell cycle and inducing cell apoptosis.


Assuntos
60489 , Mebendazol/análogos & derivados , Fator A de Crescimento do Endotélio Vascular , Humanos , Células PC-3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cinética , Movimento Celular , Proliferação de Células , Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
J Enzyme Inhib Med Chem ; 39(1): 2305856, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38326989

RESUMO

A novel series of 1,2,3-triazole/1,2,4-oxadiazole hybrids (7a-o) was developed as dual inhibitors of EGFR/VEGFR-2. Compounds 7a-o were evaluated as antiproliferative agents with Erlotinib as the reference drug. Results demonstrated that most of the tested compounds showed significant antiproliferative action with GI50 values ranging from 28 to 104 nM, compared to Erlotinib (GI50 = 33 nM), and compounds 7i-m were the most potent. Compounds 7h, 7i, 7j, 7k, and 7l were evaluated as dual EGFR/VEGFR-2 inhibitors. These in vitro experiments demonstrated that compounds 7j, 7k, and 7l are potent antiproliferative agents that may operate as dual EGFR/VEGFR-2 inhibitors. Compounds 7j, 7k, and 7l were evaluated for their apoptotic potential activity, where findings indicated that compounds 7j, 7k, and 7l promote apoptosis by activating caspase-3, 8, and Bax and down-regulating the anti-apoptotic Bcl-2. Molecular docking simulations show the binding mode of the most active antiproliferative compounds within EGFR and VEGFR-2 active sites.


Assuntos
Antineoplásicos , Triazóis , Estrutura Molecular , Relação Estrutura-Atividade , Cloridrato de Erlotinib/farmacologia , Simulação de Acoplamento Molecular , Triazóis/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/química , Receptores ErbB/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral
10.
J Ethnopharmacol ; 326: 117913, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38360380

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated. AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis. MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model. RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor. CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.


Assuntos
Cinamatos , Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Peixe-Zebra , Células Endoteliais da Veia Umbilical Humana , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células , Movimento Celular , Transdução de Sinais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neoplasias Colorretais/metabolismo , Neoplasias do Colo/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/metabolismo
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(2): 189-197, 2024 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-38385232

RESUMO

Objective: To explore the mechanisms for repairing spinal cord injury (SCI) with tetramethylpyrazine-loaded electroconductive hydrogel (hereinafter referred to as "TGTP"). Mehtods: A total of 72 female Sprague-Dawley rats were randomly divided into 4 groups: sham operation group (group A), SCI group (group B), SCI+electroconductive hydrogel group (group C), and SCI+TGTP group (group D). Only the vertebral plate was removed in group A, while the remaining groups were subjected to a whole transection model of spinal cord with a 2 mm gap in the lesions. The recovery of hindlimb motor function was evaluated by Basso, Beattie, Bresnahan (BBB) score and modified Rivlin-Tator inclined plate test before operation and at 1, 3, 7, 14, and 28 days after operation, respectively. Animals were sacrificed at 7 days and 28 days after modeling. Neovascularisation was observed by immunofluorescence staining of CD31 and the expression levels of angiopoietin 1 (Ang-1) and Tie-2 were assessed by Western blot assay. At 28 days postoperatively, the expression levels of pro-angiogenic related proteins, including platelet-derived growth factor B (PDGF-B), PDGF receptor ß (PDGFR-ß), vascular endothelial growth factor A (VEGF-A), and VEGF receptor 2 (VEGFR-2), were also assessed by Western blot. The fibrous scar in the injured area was assessed using Masson staining, while neuronal survival was observed through Nissl staining. Furthermore, LFB staining was utilized to detect myelin distribution and regeneration. Immunofluorescence and Western blot assay were employed to evaluate the expression of neurofilament 200 (NF200). Results: The hindlimb motor function of rats in each group gradually recovered from the 3rd day after operation. The BBB score and climbing angle in group D were significantly higher than those in group B from 3 to 28 days after operation, and significantly higher than those in group C at 14 days and 28 days after operation ( P<0.05). Masson staining showed that the collagen volume fraction in groups B-D were significantly higher than that in group A, and that in group D was significantly lower than that in groups B and C ( P<0.05); a small amount of black conductive particles were scattered at the broken end in group D, and the surrounding collagen fibers were less than those in group C. Nissl and LFB staining showed that the structure of neurons and myelin sheath in the injured area of spinal cord in group D was relatively complete and continuous, and the number of Nissl bodies and the positive area of myelin sheath in group D were significantly better than those in groups B and C ( P<0.05). NF200 immunofluorescence staining and Western blot assay results showed that the relative expression of NF200 protein in group D was significantly higher than that in groups B and C ( P<0.05). CD31 immunofluorescence staining showed that the fluorescence intensity of group D was better than that of groups B and C at 28 days after operation, and tubular or linear neovascularization could be seen. The relative expressions of Ang-1 and Tie-2 proteins in group D were significantly higher than those in groups B and C at 7 and 28 days after operation ( P<0.05). The relative expressions of PDGF-B and PDGFR-ß proteins in group D were significantly higher than those in groups B and C, and group B was significantly higher than group C at 28 days after operation ( P<0.05). The relative expressions of VEGF-A and VEGFR2 proteins in group D were higher than those in groups B and C, showing significant difference when compared with group B ( P<0.05), but only the expression of VEGF-A protein was significantly higher than that in group C ( P<0.05). There was significant difference only in VEGFR-2 protein between groups B and C ( P<0.05). Conclusion: TGTP may enhance the revascularization of the injured area and protect the neurons, thus alleviating the injury of spinal cord tissue structure and promoting the recovery of neurological function after SCI in rats.


Assuntos
Pirazinas , Traumatismos da Medula Espinal , Fator A de Crescimento do Endotélio Vascular , Ratos , Feminino , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neuroproteção , Hidrogéis , 60489 , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Colágeno/metabolismo
12.
Nat Commun ; 15(1): 1346, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355851

RESUMO

Ligand-independent activation of VEGFRs is a hallmark of diabetes and several cancers. Like EGFR, VEGFR2 is activated spontaneously at high receptor concentrations. VEGFR1, on the other hand, remains constitutively inactive in the unligated state, making it an exception among VEGFRs. Ligand stimulation transiently phosphorylates VEGFR1 and induces weak kinase activation in endothelial cells. Recent studies, however, suggest that VEGFR1 signaling is indispensable in regulating various physiological or pathological events. The reason why VEGFR1 is regulated differently from other VEGFRs remains unknown. Here, we elucidate a mechanism of juxtamembrane inhibition that shifts the equilibrium of VEGFR1 towards the inactive state, rendering it an inefficient kinase. The juxtamembrane inhibition of VEGFR1 suppresses its basal phosphorylation even at high receptor concentrations and transiently stabilizes tyrosine phosphorylation after ligand stimulation. We conclude that a subtle imbalance in phosphatase activation or removing juxtamembrane inhibition is sufficient to induce ligand-independent activation of VEGFR1 and sustain tyrosine phosphorylation.


Assuntos
Células Endoteliais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Ligantes , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Tirosina/metabolismo
13.
Int J Nanomedicine ; 19: 1451-1467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371456

RESUMO

Background: Ischemic stroke (IS) causes tragic death and disability worldwide. However, effective therapeutic interventions are finite. After IS, blood-brain barrier (BBB) integrity is disrupted, resulting in deteriorating neurological function. As a novel therapeutic, extracellular vesicles (EVs) have shown ideal restorative effects on BBB integrity post-stroke; however, the definite mechanisms remain ambiguous. In the present study, we investigated the curative effects and the mechanisms of EVs derived from bone marrow mesenchymal stem cells and brain endothelial cells (BMSC-EVs and BEC-EVs) on BBB integrity after acute IS. Methods: EVs were isolated from BMSCs and BECs, and we investigated the therapeutic effect in vitro oxygen-glucose deprivation (OGD) insulted BECs model and in vivo rat middle cerebral artery occlusion (MCAo) model. The cell monolayer leakage, tight junction expression, and metalloproteinase (MMP) activity were evaluated, and rat brain infarct volume and neurological function were also analyzed. Results: The administration of two kinds of EVs not only enhanced ZO-1 and Occludin expressions but also reduced the permeability and the activity of MMP-2/9 in OGD-insulted BECs. The amelioration of the cerebral infarction, BBB leakage, neurological function deficits, and the increasing ZO-1 and Occludin levels, as well as MMP activity inhibition was observed in MCAo rats. Additionally, the increased levels of Caveolin-1, CD147, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor A (VEGFA) in isolated brain microvessels were downregulated after EVs treatment. In vitro, the employment of Caveolin-1 and CD147 siRNA partly suppressed the expressions of VEGFR2, VEGFA and MMP-2/9 activity and reduced the leakage of OGD insulted BECs and enhanced ZO-1 and Occludin expressions. Conclusion: Our study firstly demonstrates that BEC and BMSC-EVs administrations maintain BBB integrity via the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after IS, and the efficacy of BMSC-EVs is superior to that of BEC-EVs.


Assuntos
Isquemia Encefálica , Vesículas Extracelulares , AVC Isquêmico , Ratos , Animais , Barreira Hematoencefálica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Caveolina 1/metabolismo , Ocludina/metabolismo , Células Endoteliais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Infarto da Artéria Cerebral Média , Isquemia Encefálica/metabolismo , Glucose/metabolismo , Vesículas Extracelulares/metabolismo
14.
PLoS Comput Biol ; 20(2): e1011798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324585

RESUMO

The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Fosforilação , Neuropilina-1/metabolismo
15.
Angiogenesis ; 27(2): 245-272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403816

RESUMO

Angiogenesis is a crucial process in the progression of various pathologies, like solid tumors, wet age-related macular degeneration, and chronic inflammation. Current anti-angiogenic treatments still have major drawbacks like limited efficacy in diseases that also rely on inflammation. Therefore, new anti-angiogenic approaches are sorely needed, and simultaneous inhibition of angiogenesis and inflammation is desirable. Here, we show that 2-desaza-annomontine (C81), a derivative of the plant alkaloid annomontine previously shown to inhibit endothelial inflammation, impedes angiogenesis by inhibiting CDC2-like kinases (CLKs) and WNT/ß-catenin signaling. C81 reduced choroidal neovascularization in a laser-induced murine in vivo model, inhibited sprouting from vascular endothelial growth factor A (VEGF-A)-activated murine aortic rings ex vivo, and reduced angiogenesis-related activities of endothelial cells in multiple functional assays. This was largely phenocopied by CLK inhibitors and knockdowns, but not by inhibitors of the other known targets of C81. Mechanistically, CLK inhibition reduced VEGF receptor 2 (VEGFR2) mRNA and protein expression as well as downstream signaling. This was partly caused by a reduction of WNT/ß-catenin pathway activity, as activating the pathway induced, while ß-catenin knockdown impeded VEGFR2 expression. Surprisingly, alternative splicing of VEGFR2 was not detected. In summary, C81 and other CLK inhibitors could be promising compounds in the treatment of diseases that depend on angiogenesis and inflammation due to their impairment of both processes.


Assuntos
Carbolinas , Pirimidinas , Fator A de Crescimento do Endotélio Vascular , beta Catenina , Camundongos , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Proliferação de Células , 60489 , Inibidores da Angiogênese/farmacologia , Movimento Celular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt , Neovascularização Patológica/tratamento farmacológico , Inflamação , Células Endoteliais da Veia Umbilical Humana/metabolismo
16.
Commun Biol ; 7(1): 112, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242992

RESUMO

Endothelial cells express neuropilin 1 (NRP1), endoglin (ENG) and vascular endothelial growth factor receptor 2 (VEGFR2), which regulate VEGF-A-mediated vascular development and angiogenesis. However, the link between complex formation among these receptors with VEGF-A-induced signaling and biology is yet unclear. Here, we quantify surface receptor interactions by IgG-mediated immobilization of one receptor, and fluorescence recovery after photobleaching (FRAP) measurements of the mobility of another coexpressed receptor. We observe stable ENG/NRP1, ENG/VEGFR2, and NRP1/VEGFR2 complexes, which are enhanced by VEGF-A. ENG augments NRP1/VEGFR2 interactions, suggesting formation of tripartite complexes bridged by ENG. Effects on signaling are measured in murine embryonic endothelial cells expressing (MEEC+/+) or lacking (MEEC-/-) ENG, along with NRP1 and/or ENG overexpression or knockdown. We find that optimal VEGF-A-mediated phosphorylation of VEGFR2 and Erk1/2 requires ENG and NRP1. ENG or NRP1 increase VEGF-A-induced sprouting, becoming optimal in cells expressing all three receptors, and both processes are inhibited by a MEK1/2 inhibitor. We propose a model where the maximal potency of VEGF-A involves a tripartite complex where ENG bridges VEGFR2 and NRP1, providing an attractive therapeutic target for modulation of VEGF-A signaling and biological responses.


Assuntos
Endoglina , Neuropilina-1 , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Endoglina/genética , Endoglina/metabolismo , Células Endoteliais/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fosforilação , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais
17.
Transl Vis Sci Technol ; 13(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165719

RESUMO

Purpose: The present study aimed to evaluate the effect of acrizanib, a small molecule inhibitor targeting vascular endothelial growth factor receptor 2 (VEGFR2), on physiological angiogenesis and pathological neovascularization in the eye and to explore the underlying molecular mechanisms. Methods: We investigated the potential role of acrizanib in physiological angiogenesis using C57BL/6J newborn mice, and pathological angiogenesis using the mouse oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models. Moreover, vascular endothelial growth factor (VEGF)-treated human umbilical vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying acrizanib's antiangiogenic effects. Results: The intravitreal injection of acrizanib did not show a considerable impact on physiological angiogenesis and retinal thickness, indicating a potentially favorable safety profile. In the mouse models of OIR and CNV, acrizanib showed promising results in reducing pathological neovascularization, inflammation, and vascular leakage, indicating its potential efficacy against pathological angiogenesis. Consistent with in vivo results, acrizanib blunted angiogenic events in VEGF-treated HUVECs such as proliferation, migration, and tube formation. Furthermore, acrizanib inhibited the multisite phosphorylation of VEGFR2 to varying degrees and the activation of its downstream signal pathways in VEGF-treated HUVECs. Conclusions: This study suggested the potential efficacy and safety of acrizanib in suppressing fundus neovascularization. Acrizanib functioned through inhibiting multiple phosphorylation sites of VEGFR2 in endothelial cells to different degrees. Translational Relevance: These results indicated that acrizanib might hold promise as a potential candidate for the treatment of ocular vascular diseases.


Assuntos
Neovascularização de Coroide , Doenças Retinianas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Proliferação de Células , Células Cultivadas , Neovascularização de Coroide/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Fosforilação , Doenças Retinianas/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
J Ethnopharmacol ; 324: 117811, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38286156

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the roots of Kaempferia galanga has been used to treat high blood pressure, chest pain, headache, toothache, rheumatism, indigestion, cough, inflammation and cancer in Asia. Nevertheless, most of its pharmacological studies were focused on ethanolic extracts and volatile oils. The exact active chemical constituents and their underlying mechanisms are still poorly understood, especially towards its anti-cancer treatment. Inhibition of angiogenesis is an important atrategy to inhibit tumor growth. It has been reported that the low polar component of the plant possessed anti-angiogenic activity. Yet, the potent compound which is responsible for the effect and its molecular mechanism has not been reported. AIM OF THE STUDY: To determine the potent anti-angiogenic component in K.galanga and its mechanism of action. MATERIAL AND METHODS: The low polar components of the plant were concentrated using the methods of supercritical fluid extraction (SFE), subcritical extraction (SCE) and steam distillation (SD). The anti-angiogenic activity of the three extracts was evaluated using a zebrafish model. The content of the active compound in those extracts was determined with HPLC analysis. The in-vitro and in-vivo activity of the isolated compound was evaluated using human umbilical vein endothelial cells (HUVECs) model, the aortic ring assay and the matrigel plug assay, respectively. Its molecular mechanism was further studied by the western blotting assay and computer-docking experiments. Besides, its cytotoxicity on cancer and normal cell lines was evaluated using the cell-counting kit. RESULTS: HPLC results showed that trans-ethyl p-methoxycinnamate (TEM) was the major component of the extracts. The extract of SFE showed the best effect as it has the highest content of TEM. TEM could inhibit vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, it inhibited VEGF-induced sprout formation ex vivo and vessel formation in vivo. Mechanistic study showed that it could suppress tyrosine kinase activity of the receptor of VEGF (VEGFR2) and alter its downstream signaling pathways. In addition, the molecular docking showed that the binding of TEM and VEGFR2 is stable, which mainly attributed to the non-covalent binding interaction. Beside, TEM possessed little toxicity to both cancer and normal cells. CONCLUSION: TEM is the major anti-angiogenic component present in K. galanga and its anti-angiogenic property rather than toxicity provides scientific basis for the traditional use of K. galanga in cancer treatment.


Assuntos
Alpinia , Neoplasias , Zingiberaceae , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Peixe-Zebra , Simulação de Acoplamento Molecular , Zingiberaceae/química , Células Endoteliais da Veia Umbilical Humana , Neoplasias/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Movimento Celular , Proliferação de Células , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
J Biomol Struct Dyn ; 42(2): 1047-1063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029768

RESUMO

Angiogenesis is mediated by the vascular endothelial growth factor (VEGF) that plays a key role in the modulation of progression, invasion and metastasis, related to solid tumors and hematological malignancies. Several small-molecule VEGFR-2 inhibitors are marketed, but their usage is restricted to specific cancers due to severe toxicities. Therefore, cost-effective novel small molecule VEGFR-2 inhibitors may be an alternative to overcome these adverse effects. Here, a set of thiourea-based VEGFR-2 inhibitors were considered for a combined fragment-based QSAR technique, structure-based molecular docking followed by molecular dynamics simulation studies to acquire insights into the key structural attributes and the binding pattern of enzyme-ligand interactions. Noticeably, amine-substituted quinazoline phenyl ring and a higher number of nitrogen atoms, and the hydrazide function in the molecular structure are crucial for VEGFR-2 inhibition whereas methoxy groups are detrimental to VEGFR-2 inhibition. The MD simulation study of sorafenib and thiourea derivatives explored the significance of urea and thiourea moiety binding at VEGFR-2 active site that can be utilized further in the future to design molecules for greater binding stability and better VEGFR-2 selectivity. Therefore, such findings can be beneficial for the development of newer VEGFR-2 inhibitors for further refinement to acquire better therapeutic efficacy.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Fator A de Crescimento do Endotélio Vascular , Estrutura Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Tioureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Antineoplásicos/química , Proliferação de Células
20.
Bioorg Chem ; 143: 107037, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134521

RESUMO

Presently, dual-targeting by a single small molecule stands out as a fruitful cancer-fighting strategy. Joining the global effort to fight cancer, a leading cause of death worldwide, we report in this study a novel set for benzothiophene-based aryl urea derivatives as potential anti-proliferative candidates endowed with dual VEGFR-2/EGFR inhibitory activities. The prepared ureido benzothiophenes 6a-r have been evaluated for their anticancer action on a panel of tumor cell lines, namely PanC-1, MCF-7, and HepG2 cells. Most newly synthesized benzo[b]thiophene ureas disclosed effective cytotoxic activities against the examined cancer cell lines. In particular, compound 6q, with an appended 4-trifluoromethoxy group on the terminal phenyl ring, exhibited the most significant cytotoxic activity in MCF-7 with IC50 3.86 ± 0.72 ug/mL; IC50 of 3.65 ± 0.18 ug/ml in PanC-1 cell line and an IC50 of 4.78 ± 0.06 ug/ml in HepG2. After that, derivatives that exhibited the most potent cytotoxic activities (6g, 6j, 6q, and 6r) were further evaluated as VEGFR-2 and EGFR inhibitors. Fortunately, they displayed low nanomolar IC50 values against both enzymes, where compound 6q emerged to possess superior inhibitory effects towards both EGFR and VEGFR-2 with IC50 46.6 nM and 11.3 nM simultaneously compared to the reference medications Erlotinib and Sorafenib, respectively. The docked structure of 6q within the catalytic region of VEGFR-2 and EGFR kinases was acquired and studied so that we could investigate potential binding mechanisms for the target ureido benzothiophenes. Hence, the benzothiophene-based aryl urea scaffold has great potential for advancing the development of highly effective dual inhibitors targeting both EGFR and VEGFR-2, which can serve as effective candidates for anticancer therapy.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/química , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/química , Tiofenos/farmacologia , Ureia/farmacologia , Receptores ErbB/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...